What are some potential pitfalls when interpolating weather data in PHP?

One potential pitfall when interpolating weather data in PHP is not handling missing or incomplete data properly, which can lead to inaccurate results. To solve this issue, you can implement a method to check for missing data points and handle them accordingly, such as by using a fallback value or skipping the interpolation for that particular data point.

// Sample code to interpolate weather data with handling for missing data

function interpolateWeatherData($data) {
    $result = [];

    foreach ($data as $key => $value) {
        if (isset($value['temperature']) && isset($value['humidity'])) {
            // Perform interpolation calculation
            $result[$key] = interpolate($value['temperature'], $value['humidity']);
        } else {
            // Handle missing data points
            $result[$key] = 'N/A';
        }
    }

    return $result;
}

function interpolate($temp, $humidity) {
    // Interpolation calculation logic
    return ($temp + $humidity) / 2;
}

// Sample weather data
$weatherData = [
    ['temperature' => 25, 'humidity' => 60],
    ['temperature' => 28, 'humidity' => null],
    ['temperature' => null, 'humidity' => 65],
    ['temperature' => 30, 'humidity' => 70],
];

$result = interpolateWeatherData($weatherData);

print_r($result);