How can the maximum number of solutions for a Sudoku be accurately determined in PHP using a backtracking approach?

To determine the maximum number of solutions for a Sudoku puzzle using a backtracking approach in PHP, we can create a recursive function that tries all possible numbers for each empty cell while ensuring that the current state of the puzzle remains valid. By keeping track of the number of solutions found, we can accurately determine the maximum number of solutions for the Sudoku puzzle.

```php
<?php

function solveSudoku(&$board) {
    $empty = findEmptyCell($board);
    
    if (!$empty) {
        return 1; // found a solution
    }
    
    list($row, $col) = $empty;
    
    $count = 0;
    
    for ($num = 1; $num <= 9; $num++) {
        if (isValidMove($board, $row, $col, $num)) {
            $board[$row][$col] = $num;
            $count += solveSudoku($board);
            $board[$row][$col] = 0; // backtrack
        }
    }
    
    return $count;
}

function findEmptyCell(&$board) {
    for ($i = 0; $i < 9; $i++) {
        for ($j = 0; $j < 9; $j++) {
            if ($board[$i][$j] == 0) {
                return [$i, $j];
            }
        }
    }
    
    return false;
}

function isValidMove($board, $row, $col, $num) {
    for ($i = 0; $i < 9; $i++) {
        if ($board[$row][$i] == $num || $board[$i][$col] == $num) {
            return false;
        }
    }
    
    $startRow = $row - $row % 3;
    $startCol = $col - $col % 3;
    
    for ($i = 0; $i < 3; $i++) {
        for ($j = 0; $j < 3; $j++) {
            if ($board[$i + $startRow][$j + $startCol] == $num) {
                return false;
            }
        }
    }
    
    return true;
}

// Example usage
$board = [
    [5, 3, 0, 0, 7, 0, 0, 0